TECNICAS DE
REVISION
Las Técnicas de Revisión y Evaluación de Programas (o Proyectos), comúnmente referidas con la abreviatura PERT (del inglés, Program Evaluation and Review Techniques), es una técnica estadística y modelo para la administración y gestión de proyectos inventado en 1957 por la Oficina de Proyectos Especiales de la Marina de Guerra del Departamento de Defensa de EE. UU. como parte del proyecto Polaris de misil balístico móvil lanzado desde submarino. Este proyecto fue una respuesta directa a la crisis del Sputnik.PERT es básicamente un método para analizar las tareas involucradas en completar un proyecto dado, especialmente el tiempo para completar cada tarea, e identificar el tiempo mínimo necesario para completar el proyecto total.
·
Holgura de la Actividad (H);
Este modelo de proyecto fue el primero de su tipo, y supuso un nuevo impulso para la administración científica, fundada por el fordismo y el taylorismo. No son muy comunes otros tipos de modelos de proyectos, prácticamente todos se basan en PERT de algún modo. Solo el método de la ruta crítica (de la Corporación DuPont fue inventado casi en la misma época que PERT.
La parte más famosa de PERT son las Redes PERT, diagramas de líneas de tiempo que se interconectan.
Redes PERT[
Una malla PERT permite planificar y
controlar el desarrollo de un proyecto. A diferencia de las redes las
redes PERT trabajan con tiempos probabilísticos.
Normalmente, para desarrollar un
proyecto específico lo primero que se hace es determinar, en una reunión
multidisciplinaria, cuáles son las actividades que se deberán ejecutar para
llevar a término el proyecto según los requerimientos establecidos, cuál es la
precedencia entre ellas y cuál será la duración esperada de cada una.
Para definir la precedencia entre
actividades se requiere de una cierta cuota de experiencia profesional en el
área, en proyectos afines.
Principios
Estos tres principios deben
respetarse siempre a la hora de dibujar una malla PERT:
·
Principio de designación sucesiva: se nombra a los
vértices según los números naturales, de manera que no se les asigna número
hasta que han sido nombrados todos aquellos de los que parten aristas que van a
parar a ellos.
·
Principio de unicidad del estado inicial y el final: se prohíbe la existencia
de más de un vértice inicial o final. Solo existe una situación de inicio y
otra de terminación del proyecto.
·
Principio de designación unívoca: no pueden
existir dos aristas que tengan los mismos nodos de origen y de destino.
Normalmente, se nombran las actividades mediante el par de vértices que unen.
Si no se respetara este principio, puede que dos aristas recibieran la misma
denominación.
Duración de una Actividad[
Para estimar la duración esperada de
cada actividad es también deseable tener experiencia previa en la realización
de tareas similares. En planificación y programación de proyectos se estima que
la duración esperada de una actividad es una variable aleatoria de distribución
de probabilidad Beta Unimodal de parámetros (a, m, b) donde:
= Se define como el tiempo optimista al menor tiempo que puede
durar una actividad.
= Es el tiempo más probable que podría durar una actividad.
= Éste es el tiempo pesimista, o el mayor tiempo que puede durar
una actividad.
= Corresponde al tiempo esperado para una
actividad (Este corresponde al tiempo CPM,
asumiendo que los cálculos son exactos).
NOTA: Se supone que cada Tarea, sigue
una ley de distribución de de Euler.
El valor (o tiempo) esperado en esta
distribución. Esta se expresa en la siguiente fórmula:
cuya varianza está dada por: y una desviación estándar:
En un dibujo de una malla PERT
podemos distinguir nodos y arcos,
los nodos representan instantes en el tiempo. Específicamente, representan el
instante de inicio de una o varias actividades y simultáneamente el instante de
término de otras varias actividades. Los arcos por su parte representan las
actividades, tienen un nodo inicial y otro de término donde llega en punta de
flecha. Asociada a cada arco está la duración esperada de la actividad. Más
información de un diagrama de
actividades es representar éstas con una valoración de
complejidad para minimizar el efecto de cuello de botella.
Dibujo de una malla PERT
Existen dos metodologías aceptadas
para dibujar una malla PERT, la de “Actividad en el Arco” y las de “Actividad
en el Nodo”, siendo esta última la más utilizada en la actualidad en atención a
que es la que usan la mayoría de las aplicaciones computacionales especialistas
en este tema.
Cada nodo contiene la siguiente
información sobre la actividad:
·
Nombre de la actividad;
·
Duración esperada de la actividad (t);
·
Tiempo de inicio más temprano (ES = Earliest Start);
·
Tiempo de término más temprano (EF = Earliest Finish);Otra forma de representar la red PERT
·
Tiempo de inicio más tardío (LS = Latest Start);
·
Tiempo de término más tardío (LF = Latest Finish);
Por convención los arcos se dibujan
siempre con orientación hacia la derecha, hacia el nodo de terminación del
proyecto, nunca retrocediendo. El dibujo de una malla PERT se comienza en el
nodo de inicio del proyecto. A partir de él se dibujan las actividades que no
tienen actividades precedentes, o sea, aquellas que no tienen que esperar que
otras actividades terminen para poder ellas iniciarse. A continuación, se
dibujan las restantes actividades cuidando de respetar la precedencia entre
ellas. Al terminar el dibujo de la malla preliminar, existirán varios nodos
ciegos, nodos terminales a los que llegan aquellas actividades que no son
predecesoras de ninguna otra, es decir aquellas que no influyen en la fecha de
inicio de ninguna otra, éstas son las actividades terminales y concurren por lo
tanto al nodo de término del proyecto.
Cálculo de los tiempos de inicio y terminación más tempranos
El tiempo de inicio más temprano “ES”
(Early Start) y de terminación más temprano “EF” (Early finish) para cada
actividad del proyecto, se calculan desde el nodo de inicio hacia el nodo de
terminación del proyecto según la siguiente relación: La duración esperada del
proyecto (T) es igual al mayor de los tiempos EF de todas las actividades que
desembocan en el nodo de finalización o terminación del proyecto.
Cálculo de los tiempos de inicio y terminación más tardíos
El tiempo de inicio más tardío “LS”
(Latest Start) y de finalización más tardío “LF” (Latest finish) para cada
actividad del proyecto, se calculan desde el nodo de término retrocediendo
hacia el nodo de inicio del proyecto según la siguiente relación:
Donde (t) es el tiempo esperado de
duración de la actividad y donde LF queda definida según la siguiente regla:
·
Regla del tiempo de terminación más tardío:
El tiempo de terminación más tardío,
LF, de una actividad específica, es igual al menor de los tiempos LS de todas
las actividades que comienzan exactamente después de ella.
El tiempo de terminación más tardío
de las actividades que finalizan en el nodo de terminación del proyecto es
igual a la duración esperada del proyecto (T).
- Se denomina actividades críticas a aquellas actividades cuya holgura es nula y que por lo tanto, si se retrasan en su fecha de inicio o se alargan en su ejecución más allá de su duración esperada, provocarán un retraso exactamente igual en tiempo en la fecha de término del proyecto.
- Rutas críticas
- Se denomina rutas críticas a los caminos continuos entre el nodo de inicio y el nodo de terminación del proyecto, cuyos arcos componentes son todos actividades críticas.
- Las rutas críticas se nombran por la secuencia de actividades críticas que la componen o bien por la secuencia de nodos por los que atraviesa.
- Nótese que un proyecto puede tener más de una ruta crítica pero al menos tendrá siempre una.
Holgura total
- La holgura total es el intervalo durante el cual una operación, que se inicia a partir de las fechas más tempranas, se puede desplazar hacia el futuro sin que se vean afectadas las fechas más tardías de las operaciones sucesoras o la fecha final extrema del grafo. La holgura total puede ser menor que, mayor que o igual a cero (holgura total =fin más tardío - fin más temprano). Si las fechas más tempranas y más tardías de una operación coinciden en el mismo día, la holgura total será cero. Las operaciones con la holgura total menor se denominan "críticas".El camino crítico es el camino a través del grafo en el que se ordenan las operaciones y sus relaciones de ordenación de manera que la holgura total es mínima. Por lo general, el camino crítico es el tiempo más largo que se necesita para elaborar el grafo.
- La holgura libre es el intervalo durante el cual una operación, que se inicia a partir de las fechas más tempranas, se puede desplazar hacia el futuro sin que se vean afectadas las fechas más tempranas de las operaciones sucesivas o la fecha de fin extrema del grafo. La holgura libre no puede ser inferior a cero ni mayor que la holgura total
No hay comentarios:
Publicar un comentario